COMPRESSIBILITY OF BISMUTH AND ITS UPPER TRANSITION PRESSURE 1525

FIG. 1. Inductance of a coil wound on a threaded Bi core as a function of ram pressure at room temperature. Lead inductance was 0.5800 µH.

FIG. 2. Compression curve of Bi at 25°C.

The compression curve of Bi to 60 kbar at 25°C is shown in Fig. 2 which also shows Bridgman's results for comparison. The data is tabulated at 5 kbar increments in Table 1. These results are

Table 1. Compression of Bismuth at 25°C.* The listed values are the means and standard deviations for eight experiments

P (kbars)	-	-(∆V/V₀) %	P (kbars)	$-(\Delta V/V_0)$
0		0	35	17.2 ± 0.8
5		1.5	40	17.8 ± 0.9
10		2.8	45	18.3 ± 0.9
15		4.1	50	18.9 ± 0.9
20	÷	5.3	55	19.4 ± 1.0
25		6·3	60	$19 \cdot 9 \pm 1 \cdot 0$
30		16.7 ± 0.8		

* Matched with BRIDGMAN's⁽²⁾ data up to 20 kbar. † (i) Transition at 25.4 kbar; compressions -6.4%

to $-(12\cdot 2\pm 0\cdot 4)\%$; (ii) Transition at 26.8 kbar; compressions $-(12\cdot 4\pm 0\cdot 5)\%$ to $-(16\cdot 0\pm 0\cdot 8)\%$.

based on eight runs for which the experimental set-ups differed among each other in some respect, such as sample size, pressed powder vs. cast samples, thickness of silver chloride jacket (when used), and whether or not a thin pyrophyllite sleeve was placed on the coil before enclosing it in silver chloride. On completely identical set-ups the reproducibility was better than $\pm 2\%$ of the vol. changes themselves.

The over-all results are in fairly good agreement with Bridgman's data. The most significant differences occur in the region of the transitions. The Bi_{I-II} and Bi_{II-III} transitions occur so close together in pressure that it was beyond the resolving powers of Bridgman's 50 kbar⁽¹⁾ and 100 kbar⁽²⁾ apparatus to separate them. In earlier lower pressure work, however, he reported the vol. changes at the two transitions separately.⁽⁹⁾ Table 2 compares the results and also includes LAMORI's⁽¹⁰⁾ data obtained by the piston displacement technique.

The ratios of the sudden vol. changes I-II: II-III varied between 1.41:1.0 and 1.60:1.0 for the various runs. By way of comparison BRIDG-MAN's data⁽⁹⁾ yielded a ratio of 1.53:1.0 and that of LaMori 1.33:1.0. It is not clear why there should be such a large scatter in this ratio. In his resistance work, BRIDGMAN⁽³⁾ also observed a wide variation in the ratio of the resistance changes